Subtyping Constraints in Quasi-lattices
نویسندگان
چکیده
In this report, we show the decidability and NP-completeness of the satisfiability problem for non-structural subtyping constraints in quasi-lattices. This problem, first introduced by Smolka in 1989, is important for the typing of logic and functional languages. The decidability result is obtained by generalizing Trifonov and Smith’s algorithm over lattices, to the case of quasi-lattices. Similarly, we extend Pottier’s algorithm for computing explicit solutions to the case of quasi-lattices. Finally we evoke some applications of these results to type inference in constraint logic programming and functional programming languages. Key-words: subtyping constraints, quasi-lattices Contraintes de sous-typage dans les quasi-treillis Résumé : Dans ce rapport nous montrons la décidabilité et la NP-complétude du problème de la satisfaction des contraintes de sous-typage non-structurel dans les quasi-treillis. Ce problème posé par Smolka en 1989 est important pour le typage des langages logiques et fonctionnels. Le résultat de décidabilité est obtenu en généralisant l’algorithme de Trifonov et Smith dans les treillis, au cas des quasi-treillis. Nous étendons également l’algorithme de Pottier de calcul explicite de solutions au cas des quasi-treillis. Nous évoquons ensuite les applications de ces résultats, notamment au système TCLP de typage des programmes logiques avec contraintes. Mots-clés : contraintes de sous-typage, quasi-treillis Subtyping constraints in quasi-lattices 3
منابع مشابه
The Complexity of Subtype Entailment for Simple Types
A subtyping 0 is entailed by a set of subtyping constraints C, written C j= 0, if every valuation (mapping of type variables to ground types) that satisfies C also satisfies 0. We study the complexity of subtype entailment for simple types over lattices of base types. We show that: deciding C j= 0 is coNP-complete. decidingC j= for consistent, atomicC and ; atomic can be done in linear time. Th...
متن کاملType Inference for the Mixture of Matching and Implicit Subtyping
We present a type inference system for a language with object-oriented features such as polymorphic record access and subtyping. We separate the notion of matching and subtyping in order to avoid di culties caused by recursive type constraints. We will use two kinds of type constraints | record (variant) constraints and subtyping constraints. Then, we discuss simpli cation of such mixed type co...
متن کاملAlternative approaches to obtain t-norms and t-conorms on bounded lattices
Triangular norms in the study of probabilistic metric spaces as a special kind of associative functions defined on the unit interval. These functions have found applications in many areas since then. In this study, we present new methods for constructing triangular norms and triangular conorms on an arbitrary bounded lattice under some constraints. Also, we give some illustrative examples for t...
متن کاملSubtyping Constrained Types
A constrained type is a type that comes with a set of subtyping constraints on variables occurring in the type. Constrained type inference systems are a natural generalization of Hindley/Milner type inference to languages with subtyping. This paper develops several subtyping relations on polymorphic constrained types of a general form that allows recursive constraints and multiple bounds on typ...
متن کاملAnalogizing Hutton's quasi-uniformities for complete lattices and extending Shi's quasi-uniformities to closed set lattices
This paper gives analogies of Hutton’s quasi-uniformities for complete lattices and extensions of Shi’s pointwise quasi-uniformities to closed set lattices.CLGOH denotes the category of all complete lattices with generalized order homomorphisms asmorphisms and CSL the category of all closed set lattices.HQUnif and SPQUnif denote the categories of Hutton quasi-uniform spaces on complete lattices...
متن کامل